Asymptotic Stability of Semilinear Infinite-Dimensional Dissipative Systems

Ilyasse Aksikas

University of Alberta, Chemical and Materials Engineering

CDPS 2009, Toulouse, France
Outline

1. Introduction
2. Semi-linear Systems
3. Application to Hyperbolic PDEs
4. Conclusion
Consider the system

\[
\begin{aligned}
\dot{x}(t) &= Ax(t) + N(x(t)) \\
x(0) &= x_0 \in D(A) \cap F \subset X
\end{aligned}
\]

1. X is a reflexive Banach space.
2. A is a linear operator defined on its domain $D(A)$
3. N is a non-linear operator defined on a closed convex subset F.
Previous Work

1. Nonlinearity defined everywhere
 Tool: m-dissipativity concept

2. Nonlinearity defined on a convex closed subset of \mathcal{X}
 Tool: weaker condition of m-dissipativity

\[\text{conv}(D(A)) \subset \bigcap_{\lambda > 0} \mathcal{R}(I - \lambda A) \]
Previous Work - Basic Result

Let us consider the nonlinear system

\[
\begin{aligned}
\dot{x}(t) &= Ax(t) \\
x(0) &= x_0
\end{aligned}
\]

- \(A \) is dissipative such that

 \[
 \text{conv}(D(A)) \subset \cap_{\lambda > 0} \mathcal{R}(I - \lambda A)
 \]

- \((I - \lambda A)^{-1}\) is compact for some \(\lambda > 0 \)
Let us consider the nonlinear system

\[
\begin{cases}
\dot{x}(t) = Ax(t) \\
x(0) = x_0
\end{cases}
\]

- A is dissipative such that

\[
\text{conv}(D(A)) \subset \bigcap_{\lambda > 0} \mathcal{R}(I - \lambda A)
\]

- $(I - \lambda A)^{-1}$ is compact for some $\lambda > 0$

Then for any $x_0 \in \overline{D(A)}$, $x(t, x_0)$ converges to $\omega(x_0)$.
Let us consider the nonlinear system

\[
\begin{align*}
\dot{x}(t) &= A x(t) \\
x(0) &= x_0
\end{align*}
\]

- A is dissipative such that
 \[
 \text{conv}(D(A)) \subset \cap_{\lambda > 0} \mathcal{R}(I - \lambda A)
 \]
- $(I - \lambda A)^{-1}$ is compact for some $\lambda > 0$

Then for any $x_0 \in \overline{D(A)}$, $x(t, x_0)$ converges to $\omega(x_0)$.

If in addition, A is strictly dissipative, then the system is asymptotically stable.
Consider a semilinear system

\[
\begin{cases}
\dot{x}(t) &= Ax(t) + N(x(t)) \\
x(0) &= x_0 \in D(A) \cap F \subset X
\end{cases}
\]

- \(A\) is closed dissipative and there exists \(\lambda > 0\) such that \((I - \lambda A)^{-1}\) is compact.
- \(N\) is a Lipschitz continuous dissipative operator on a closed convex subset \(F\).
- \(F \subset \mathcal{R}(I - \lambda A)\) for all \(\lambda > 0\).
- \(\lim \inf_{\lambda \to 0^+} \lambda^{-1} d(F, x + \lambda N(x)) = 0\) for \(x \in D(A) \cap F\).
Consider a semilinear system

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + N(x(t)) \\
x(0) &= x_0 \in D(A) \cap F \subset X
\end{align*}
\]

- A is closed dissipative and there exists $\lambda > 0$ such that $(I - \lambda A)^{-1}$ is compact.
- N is a Lipschitz continuous dissipative operator on a closed convex subset F.
- $F \subset \mathcal{R}(I - \lambda A)$ for all $\lambda > 0$.
- $\liminf_{\lambda \to 0^+} \lambda^{-1} d(F, x + \lambda N(x)) = 0$ for $x \in \overline{D(A) \cap F}$

Then for all $x_0 \in \overline{D(A) \cap F}$, $x(t, x_0) \to \omega(x_0)$. In addition if N is strictly dissipative, the system is asymptotically stable.
Objectives

- Develop stability criteria for
 \[
 \begin{cases}
 \dot{x}(t) &= Ax(t) + N(x(t)) \\
 x(0) &= x_0 \in D(A) \cap F \subset X
 \end{cases}
 \]

- Apply theoretical results to
 \[
 \frac{\partial x}{\partial t} = -\frac{\partial x}{\partial z} + Mx(t) + f(x(t))
 \]
Result 1

Theorem

Under the assumptions

- A generates a contraction semigroup on \mathcal{X}.
- there exists a positive λ such that $(I - \lambda A)^{-1}$ is compact.
- N is a Lipschitz continuous dissipative operator on F.
- For all $x_0 \in D(A) \cap F$, the system has at least one solution.
Result 1

Theorem

Under the assumptions

- \(A \) generates a contraction semigroup on \(X \).
- there exists a positive \(\lambda \) such that \((I - \lambda A)^{-1} \) is compact.
- \(N \) is a Lipschitz continuous dissipative operator on \(F \).
- For all \(x_0 \in D(A) \cap F \), the system has at least one solution.

We have

- For any \(x_0 \in D \), \(\lim_{t \to \infty} d(x(t, x_0), \omega(x_0)) \)
- Moreover if \(N \) is strictly dissipative, \(x(t, x_0) \to \bar{x} \)
Sketch of Proof

- \((I - \lambda(A + N))^{-1}\) is compact.

 ▶ \(u_n := (I - \lambda(A + N))^{-1} v_n\)

 ▶ dissipativity of \(A + N \rightarrow u_n\) is bounded.

 ▶ \(w_n := (I - \lambda A) u_n = v_n + \lambda N(u_n)\)
Sketch of Proof

- $(I - \lambda(\mathcal{A} + \mathcal{N}))^{-1}$ is compact.

 ▶ $u_n := (I - \lambda(\mathcal{A} + \mathcal{N}))^{-1}v_n$

 ▶ dissipativity of $\mathcal{A} + \mathcal{N} \to u_n$ is bounded.

 ▶ $w_n := (I - \lambda \mathcal{A})u_n = v_n + \lambda \mathcal{N}(u_n)$

- $\overline{D(\mathcal{A}) \cap F} \subset \cap_{\lambda > 0} \mathcal{R}(I - \lambda \mathcal{A})$

 ▶ Construct a contraction mapping

 ▶ Prove that $(I - \lambda(\mathcal{A} + \mathcal{N}))y = x$ admits a unique solution.
Under the assumptions

- A generates a exponentially stable semigroup on \mathcal{X}, i.e. there exist $M \geq 1$ and $\omega < 0$
 \[\|e^{At}\| \leq Me^{\omega t}, \forall t \geq 0 \]

- there exists a positive λ such that $(I - \lambda A)^{-1}$ is compact.

- N is a Lipschitz continuous on F, with $l_0 \leq -\omega/M$.

- For all $x_0 \in D(A) \cap F$, the system has at least one solution.
Result 2

Theorem

Under the assumptions

- \(A \) generates a exponentially stable semigroup on \(X \), i.e. there exist \(M \geq 1 \) and \(\omega < 0 \)

\[
\| e^{At} \| \leq Me^{\omega t}, \forall t \geq 0
\]

- there exists a positive \(\lambda \) such that \((I - \lambda A)^{-1}\) is compact.

- \(\mathcal{N} \) is a Lipschitz continuous on \(F \), with \(l_0 \leq -\omega / M \).

- For all \(x_0 \in D(A) \cap F \), the system has at least one solution.

We have

- For any \(x_0 \in D \), \(\lim_{t \to \infty} d(x(t, x_0), \omega(x_0)) \)

- Moreover if \(l_0 < -\omega / M \), \(x(t, x_0) \to \bar{X} \)
Sketch of Proof

- $M = 1$

\[\mathcal{A} + \mathcal{N} = \mathcal{A} + l_0 \mathcal{l} + \mathcal{N} - l_0 \mathcal{l} \]
Sketch of Proof

- $M = 1$

\[A + \mathcal{N} = A + l_0 I + \mathcal{N} - l_0 I \]

- $M \geq 1$

New norm

\[|x| = \sup \{ \exp(-\omega t) \| e^{At} \|, \ t \geq 0 \} \]

\[|e^{At}| \leq e^{\omega t} \]
Sketch of Proof

- $M = 1$

\[\mathcal{A} + \mathcal{N} = \mathcal{A} + l_0 I + \mathcal{N} - l_0 I \]

- $M \geq 1$

New norm

\[|x| = \sup \{ \exp(-\omega t) \| e^{At} \|, t \geq 0 \} \]

\[|e^{At}| \leq e^{\omega t} \]
Consider the PDE

$$\frac{\partial x}{\partial t} = -\frac{\partial x}{\partial z} + Mx(t) + f(x(t))$$ \hspace{1cm} (1)

subject to the boundary and initial conditions given by:

$$x(0, t) = C, \text{ and } x(z, 0) = x_0(z)$$ \hspace{1cm} (2)
PDE Model

Consider the PDE

\[
\frac{\partial x}{\partial t} = -\frac{\partial x}{\partial z} + Mx(t) + f(x(t)) \tag{1}
\]

subject to the boundary and initial conditions given by:

\[
x(0, t) = C, \text{ and } x(z, 0) = x_0(z) \tag{2}
\]

- \(x \in H := L^2(0, l)^n\)
- \(f\) is a continuous vector function defined on \(F\)
- \(M = \text{diag}(-\alpha_i), \alpha_i > 0\)
- For all \(x_0 \in D(A_0) \cap F\), (1) has at least one solution.
Properties of the operator

\[\mathcal{A} = -\frac{d}{dz} + M \cdot I \]

defined on

\[D(\mathcal{A}) = \{ x \in H : x \text{ is a.c} , \frac{dx}{dz} \in H \text{ and } x(0) = 0 \} \]
Properties of the operator

\[A = -\frac{d}{dz} + M \cdot I \]

defined on

\[D(A) = \{ x \in H : x \text{ is a.c, } \frac{dx}{dz} \in H \text{ and } x(0) = 0 \} \]

- \(A \) is m-dissipative.
- \(A \) generates an exponentially stable \(C_0 \)-semigroup.
 Moreover

\[\| e^{A t} \| \leq e^{-\alpha t}, \text{ with } \alpha = \min\{\alpha_i, i = 1, \ldots n\} \]

- there exists a positive constant \(\lambda \) such that \((I - \lambda A)^{-1}\) is compact.
Results 3&4

Theorem

If the function f is Lipschitz continuous dissipative on F, then

\[
\lim_{t \to \infty} d(x(t, x_0), \omega(x_0)) = 0
\]

Moreover if $l_0 < \alpha$, $x(t, x_0) \to x$
Results 3&4

Theorem

If the function f is Lipschitz continuous dissipative on F, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0))$
Results 3\&4

Theorem

If the function f is Lipschitz continuous dissipative on F, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0))$

- Moreover if f is strictly dissipative, $x(t, x_0) \to \bar{x}$
Theorem

If the function f is Lipschitz continuous dissipative on F, then

1. For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0))$
2. Moreover if f is strictly dissipative, $x(t, x_0) \to \bar{x}$

Theorem

If the function f is a Lipschitz continuous on F with a Lipschitz constant l_0 such that $l_0 \leq \alpha$, then
Theorem

If the function f is Lipschitz continuous dissipative on F, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0))$

- Moreover if f is strictly dissipative, $x(t, x_0) \to \bar{x}$

Theorem

If the function f is a Lipschitz continuous on F with a Lipschitz constant l_0 such that $l_0 \leq \alpha$, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0)) = 0$
Results 3&4

Theorem

If the function f is Lipschitz continuous dissipative on F, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0))$

Moreover if f is strictly dissipative, $x(t, x_0) \to \bar{x}$

Theorem

If the function f is a Lipschitz continuous on F with a Lipschitz constant l_0 such that $l_0 \leq \alpha$, then

- For any $x_0 \in D$, $\lim_{t \to \infty} d(x(t, x_0), \omega(x_0)) = 0$

Moreover if $l_0 < \alpha$, $x(t, x_0) \to \bar{x}$
Result 5

Theorem

Assume that there exists i such that $\alpha_i = 0$. If the function f is a Lipschitz continuous on F with a Lipschitz constant l_0 such that $l_0 < e^{-1}$, then

$$x(t, x_0) \rightarrow \bar{x}$$

Asymptotic stability
Theorem

Assume that there exists i such that $\alpha_i = 0$. If the function f is a Lipschitz continuous on F with a Lipschitz constant l_0 such that $l_0 < e^{-1}$, then

$$x(t, x_0) \to \bar{x}$$

Asymptotic stability

Sketch of Proof For all $\omega \in (\omega_0, 0)$, there exists a constant M_ω such that

$$\|S_0(t)\| \leq M_\omega e^{\omega t}$$

$$l_0 < \sup_{\omega < 0}(-\omega M_\omega^{-1}) = \sup_{\omega < 0}(-\omega e^{-\omega}) = e^{-1}$$
Summary

- Stability criteria have been developed for two cases

 1. Case 1: Lipschitz nonlinearity
 2. Case 2: Dissipative nonlinearity

- Results have been applied to 1st order hyperbolic PDEs