Stabilization of well-posed linear systems by dynamic sampled-data feedback

H Logemann
Dept of Mathematical Sciences
University of Bath
Contents

1. Introduction
2. Formulation of the problem
3. Main result
4. Discussion of main result
5. Proof of main result: some comments
Some previous work on **sampled-data control of infinite-dimensional systems**
Some previous work on sampled-data control of infinite-dimensional systems

- Rebarber & Townley, *IEEE TAC*, 1997
- Rebarber & Townley, *SCL*, 1998
- L, Rebarber & Townley, *SICON*, 2005
1 Introduction
1 Introduction

Objective
1 Introduction

Objective

Find necessary and sufficient conditions for the existence of stabilizing linear sampled-data controllers for well-posed infinite-dimensional linear systems
1 Introduction

Objective

Find necessary and sufficient conditions for the existence of stabilizing linear sampled-data controllers for well-posed infinite-dimensional linear systems

- Σ – well-posed infinite-dimensional continuous-time system
1 Introduction

Objective

Find necessary and sufficient conditions for the existence of stabilizing linear sampled-data controllers for well-posed infinite-dimensional linear systems.

- Σ – well-posed infinite-dimensional continuous-time system
- Σ_d – discrete-time controller, possibly infinite-dimensional
\[\tau \text{ – sampling period} \]
\(\tau \) – sampling period

\(\mathcal{H}_\tau \) – zero-order hold
\(\tau - \) sampling period

\(\mathcal{H}_\tau - \) zero-order hold

\(S_\tau - (\text{generalized}) \) sampling operation
\(\tau \) – sampling period

\(\mathcal{H}_\tau \) – zero-order hold

\(S_\tau \) – (generalized) sampling operation

\(v, v_d \) – closed-loop inputs
\(\tau \) – sampling period

\(\mathcal{H}_\tau \) – zero-order hold

\(S_\tau \) – (generalized) sampling operation

\(v, v_d \) – closed-loop inputs

\(y, y_d \) – closed-loop outputs
2 Formulation of the problem
2 Formulation of the problem

Continuous-time system \(\Sigma \)
2 Formulation of the problem

Continuous-time system Σ

- X – state space of well-posed system Σ
2 Formulation of the problem

Continuous-time system Σ

- X – state space of well-posed system Σ
- MIMO – m inputs, p outputs
Continuous-time system Σ

- X – state space of well-posed system Σ
- MIMO – m inputs, p outputs
- A, B, C – generating operators of Σ
2 Formulation of the problem

Continuous-time system Σ

- X – state space of well-posed system Σ
- MIMO – m inputs, p outputs
- A, B, C – generating operators of Σ
- $T = (T_t)_{t \geq 0}$ – C_0-semigroup generated by A
2 Formulation of the problem

Continuous-time system Σ

- X – state space of well-posed system Σ
- MIMO – m inputs, p outputs
- A, B, C – generating operators of Σ
- $T = (T_t)_{t \geq 0}$ – C_0-semigroup generated by A
- G – transfer function of Σ
2 Formulation of the problem

Continuous-time system Σ

- X – state space of well-posed system Σ
- MIMO – m inputs, p outputs
- A, B, C – generating operators of Σ
- $T = (T_t)_{t \geq 0}$ – C_0-semigroup generated by A
- G – transfer function of Σ

\[
\begin{align*}
\dot{x} &= Ax + Bu, \quad x(0) = x^0 \in X, \\
y &= C\lambda (x - (\lambda I - A)^{-1} Bu) + G(\lambda)u,
\end{align*}
\]

where

$\text{Re } \lambda > \text{exponential growth constant of } T$
Discrete-time system Σ_d
Discrete-time system Σ_d

- X_d – state space of discrete-time system Σ_d
Discrete-time system Σ_d

- X_d – state space of discrete-time system Σ_d
- MIMO – p inputs, m outputs
Discrete-time system Σ_d

- X_d – state space of discrete-time system Σ_d
- MIMO – p inputs, m outputs
- A_d, B_d, C_d – generating bounded operators of Σ_d
Discrete-time system Σ_d

- X_d – state space of discrete-time system Σ_d
- MIMO – p inputs, m outputs
- A_d, B_d, C_d – generating bounded operators of Σ_d

\[\begin{align*}
 x_d(k+1) &= A_d x_d(k) + B_d u_d(k), \quad x_d(0) = x_d^0 \in X_d, \\
 y_d(k) &= C_d x_d(k) \end{align*}\]

$\{ \Sigma_d \}$
Hold and sampling operations
Hold and sampling operations

- **Zero-order hold** operator \mathcal{H}_τ maps discrete-time signals to continuous-time signals

\[
(\mathcal{H}_\tau f_d)(t) = f_d(k) \quad \forall \ t \in [k\tau, (k-1)\tau)
\]
Hold and sampling operations

- **Zero-order hold** operator \mathcal{H}_τ maps discrete-time signals to continuous-time signals

 \[(\mathcal{H}_\tau f_d)(t) = f_d(k) \quad \forall t \in [k\tau, (k-1)\tau)\]

- **Generalized sampling** operator S_τ maps continuous-time signals to discrete-time signals

 \[(S_\tau f)(k) = \int_0^\tau w(t) f(k\tau + t)dt \quad \forall f \in L^2_{\text{loc}}(\mathbb{R}^+)\]

 where $w \in L^2(0, \tau)$.

CDPS 09, Toulouse, 20-24 July 2009
Why generalized sampling?
Why **generalized** sampling?

Output y of well-posed system not sufficiently regular for pointwise (ideal) sampling to be meaningful.
Why **generalized** sampling?

Output y of well-posed system not sufficiently regular for pointwise (ideal) sampling to be meaningful.

Feedback interconnection of Σ and Σ_d
Why **generalized** sampling?

Output y of well-posed system not sufficiently regular for pointwise (ideal) sampling to be meaningful.

Feedback interconnection of Σ and Σ_d

\[
\begin{align*}
 u &= v - \mathcal{H}_\tau y_d \\
 u_d &= v_d + S_\tau y
\end{align*}
\]
Why generalized sampling?

Output y of well-posed system not sufficiently regular for pointwise (ideal) sampling to be meaningful.

Feedback interconnection of Σ and Σ_d

\[
\begin{align*}
 u &= v - \mathcal{H}_\tau y_d \\
 u_d &= v_d + S_\tau y
\end{align*}
\]

For the resulting sampled-data system the abbreviation SDS will be used.
3 Main result
3 Main result

Stability concept
3 Main result

Stability concept

SDS is exponentially L^q/l^q-input-to-state stable if there exist $\Gamma > 0$ and $\gamma > 0$ such that
3 Main result

Stability concept

SDS is **exponentially L^q/l^q-input-to-state stable** if there exist $\Gamma > 0$ and $\gamma > 0$ such that

$$
\left\| \begin{pmatrix} x(k\tau + t) \\ x_d(k) \end{pmatrix} \right\| \leq \Gamma \left[e^{-\gamma(k\tau+t)} \left\| \begin{pmatrix} x^0 \\ x^0_d \end{pmatrix} \right\| + \| v \|_{L^q} + \| v_d \|_{l^q} \right]
$$

for all $k \in \mathbb{Z}_+, t \in [0, \tau), v \in L^q(\mathbb{R}_+)$ and $v_d \in l^q(\mathbb{Z}_+)$.
Assumptions
Assumptions

(A1) There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities.
Assumptions

(A1) There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities.

If A1 holds, then there exists a projection $\Pi : X \to X$ such that
Assumptions

(A1) There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities.

If (A1) holds, then there exists a projection $\Pi : X \to X$ such that

- $X^+ := \Pi X$ and $X^- := (I - \Pi)X$ are T-invariant.
Assumptions

$(A1)$ There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities.

If A1 holds, then there exists a projection $\Pi : X \to X$ such that

- $X^+ := \Pi X$ and $X^- := (I - \Pi)X$ are T-invariant.
- $\dim X^+ < \infty$ and $X^+ \subset D(A)$.

CDPS 09, Toulouse, 20-24 July 2009
Assumptions

(A1) There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities

If A1 holds, then there exists a projection $\Pi : X \to X$ such that

- $X^+ := \Pi X$ and $X^- := (I - \Pi)X$ are T-invariant
- $\dim X^+ < \infty$ and $X^+ \subset D(A)$

Here

$$\Pi := \frac{1}{2\pi i} \int_{\phi} (sI - A)^{-1} ds,$$
Assumptions

(A1) There exists $\alpha > 0$ such that the spectrum of A in $\mathbb{C}_{-\alpha}$ consists of finitely many isolated eigenvalues of A with finite algebraic multiplicities.

If A1 holds, then there exists a projection $\Pi : X \rightarrow X$ such that

- $X^+ := \Pi X$ and $X^- := (I - \Pi)X$ are T-invariant
- $\dim X^+ < \infty$ and $X^+ \subset D(A)$

Here

$$\Pi := \frac{1}{2\pi i} \int_{\Phi} (sI - A)^{-1} ds,$$

where Φ is a simple closed curve enclosing $\sigma(A) \cap \overline{\mathbb{C}}_0$.
Assumptions continued
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := \nabla B, \quad C^+ := C|_{X^+}, \]
\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := \cap B, \quad C^+ := C|_{X^+}, \]
\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]

Note that

\[\sigma(A^+) = \sigma(A) \cap \overline{C}_0, \quad T^+_t = e^{A^+t} \]
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := \Pi B, \quad C^+ := C|_{X^+}, \]

\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]

Note that

\[\sigma(A^+) = \sigma(A) \cap \overline{C}_0, \quad T^+_t = e^{A^+t} \]

(A2) \((T^-_t)_{t \geq 0}\) is exponentially stable
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := \cap B, \quad C^+ := C|_{X^+}, \]
\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]

Note that

\[\sigma(A^+) = \sigma(A) \cap \overline{C}_0, \quad T^+_t = e^{A^+ t} \]

(A2) \((T^-_t)_{t \geq 0}\) is exponentially stable

(A3) \((T^+_\tau, B^+)\) is controllable & \((C^+, T^+_\tau)\) is observable
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := \Pi B, \quad C^+ := C|_{X^+}, \]
\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]

Note that

\[\sigma(A^+) = \sigma(A) \cap \overline{C}_0, \quad T^+_t = e^{A^+t} \]

(A2) \((T^-_t)_{t \geq 0}\) is exponentially stable

(A3) \((T^+_\tau, B^+))\) is controllable & \((C^+, T^+_\tau))\) is observable

(A4) \(2k\pi i/\tau \notin \sigma(A^+)\) for all \(k \in \mathbb{Z}, k \neq 0\)
Assumptions continued

Define

\[A^+ := A|_{X^+}, \quad B^+ := B, \quad C^+ := C|_{X^+}, \]
\[T^+_t := T_t|_{X^+}, \quad T^-_t := T_t|_{X^-} \]

Note that

\[\sigma(A^+) = \sigma(A) \cap \overline{\mathbb{C}}_0, \quad T^+_t = e^{A^+t} \]

(A2) \((T^-_t)_{t \geq 0}\) is exponentially stable

(A3) \((T^+_\tau, B^+)\) is controllable & \((C^+, T^+_\tau)\) is observable

(A4) \(2k\pi i/\tau \notin \sigma(A^+)\) for all \(k \in \mathbb{Z}, k \neq 0\)

(A5) \(\int_0^\tau w(t)e^{\lambda t}dt \neq 0\) for every \(\lambda \in \sigma(A^+)\)
Theorem
Theorem

Let $2 \leq q \leq \infty$.

The following statements are equivalent.
Theorem

Let $2 \leq q \leq \infty$.

The following statements are equivalent.

(a) (A1)-(A5) hold.
Theorem

Let $2 \leq q \leq \infty$.

The following statements are equivalent.

(a) (A1)-(A5) hold.

(b) There exists a discrete-time controller (A_d, B_d, C_d) such that SDS is exponentially L^q/l^q-input-to-state stable.
Theorem

Let \(2 \leq q \leq \infty \).

The following statements are equivalent.

(a) \((A1)-(A5)\) hold.

(b) There exists a discrete-time controller \((A_d, B_d, C_d)\) such that SDS is exponentially \(L^q/l^q\)-input-to-state stable.

(c) There exists a finite-dimensional discrete-time controller \((A_d, B_d, C_d)\) such that SDS is exponentially \(L^q/l^q\)-input-to-state stable.
4 Discussion of main result
4 Discussion of main result

Recall assumptions (A3)-(A5):
Recall assumptions (A3)-(A5):

\textbf{(A3)} \quad (T^+_\tau, B^+) is controllable & (C^+, T^+_\tau) is observable

\textbf{(A4)} \quad 2k\pi i/\tau \notin \sigma(A^+) for all \(k \in \mathbb{Z}, k \neq 0 \)

\textbf{(A5)} \quad \int_0^\tau w(t)e^{\lambda t}dt \neq 0 \text{ for every } \lambda \in \sigma(A^+)
4 Discussion of main result

Recall assumptions (A3)-(A5):

(A3) \((T_+^+, B^+)\) is controllable & \((C^+, T_+^+)\) is observable

(A4) \(2k\pi i/\tau \notin \sigma(A^+)\) for all \(k \in \mathbb{Z}, k \neq 0\)

(A5) \(\int_0^\tau w(t)e^{\lambda t}dt \neq 0\) for every \(\lambda \in \sigma(A^+)\)

Special case: if \(w(t) \equiv \text{const}\), then (A4) \(\Rightarrow\) (A5)
4 Discussion of main result

Recall assumptions (A3)-(A5):

(A3) (T^+_{τ}, B^+) is controllable & (C^+, T^+_{τ}) is observable

(A4) $2k\pi i/\tau \not\in \sigma(A^+)$ for all $k \in \mathbb{Z}$, $k \neq 0$

(A5) $\int_0^\tau w(t)e^{\lambda t} dt \neq 0$ for every $\lambda \in \sigma(A^+)$

Special case: if $w(t) \equiv \text{const}$, then (A4) \Rightarrow (A5)

Alternative assumptions for (A3) and (A4):
Recall assumptions (A3)-(A5):

(A3) \((T^+_\tau, B^+)\) is controllable & \((C^+, T^+_\tau)\) is observable

(A4) \(2k\pi i/\tau \not\in \sigma(A^+)\) for all \(k \in \mathbb{Z}, k \neq 0\)

(A5) \(\int_0^\tau w(t)e^{\lambda t}dt \neq 0\) for every \(\lambda \in \sigma(A^+)\)

Special case: if \(w(t) \equiv \text{const}\), then (A4) \(\Rightarrow\) (A5)

Alternative assumptions for (A3) and (A4):

(A3') \((A^+, B^+)\) is controllable & \((C^+, A^+)\) is observable
4 Discussion of main result

Recall assumptions (A3)-(A5):

(A3) \((T^+_\tau, B^+)\) is controllable & \((C^+, T^+_\tau)\) is observable

(A4) \(2k\pi i/\tau \not\in \sigma(A^+)\) for all \(k \in \mathbb{Z}, k \neq 0\)

(A5) \(\int_0^\tau w(t)e^{\lambda t}dt \neq 0\) for every \(\lambda \in \sigma(A^+)\)

Special case: if \(w(t) \equiv \text{const}\), then (A4) \(\Rightarrow\) (A5)

Alternative assumptions for (A3) and (A4):

(A3') \((A^+, B^+)\) is controllable & \((C^+, A^+)\) is observable

(A4') \(\tau(\lambda - \mu) \neq 2k\pi i\) for all \(k \in \mathbb{Z}, k \neq 0\), and all \(\lambda, \mu \in \sigma(A^+)\)
By standard results from finite-dimensional sampled-data theory:
By standard results from finite-dimensional sampled-data theory:

\[(A3') \& (A4') \Rightarrow (A3)\]
By standard results from finite-dimensional sampled-data theory:

-
 \((A3') \& (A4') \Rightarrow (A3)\)

- In **SISO** case:
 \((A3') \& (A4') \Leftrightarrow (A3)\)
By standard results from finite-dimensional sampled-data theory:

- \((A3') \& (A4') \Rightarrow (A3)\)

- In **SISO** case: \((A3') \& (A4') \Leftrightarrow (A3)\)

- \((A4') \Rightarrow (A4), \ (A4') \not\equiv (A4)\)
By standard results from finite-dimensional sampled-data theory:

- \((A3') \& (A4') \Rightarrow (A3)\)

- In SISO case: \((A3') \& (A4') \Leftrightarrow (A3)\)

- \((A4') \Rightarrow (A4), \ (A4') \not\Leftrightarrow (A4)\)

- In particular, in SISO case: \((A3) \Rightarrow (A4)\)
5 Proof of main result: some comments
Sample-hold discretization of Σ
5 Proof of main result: some comments

Sample-hold discretization of Σ

Define **bounded** operators $B_τ$, $C_τ$ and $D_τ$
5 Proof of main result: some comments

Sample-hold discretization of Σ

Define bounded operators B_τ, C_τ and D_τ

- $B_\tau \xi := \int_0^\tau T_t B \xi dt \quad \forall \xi \in \mathbb{R}^m$
5 Proof of main result: some comments

Sample-hold discretization of Σ

Define bounded operators B_τ, C_τ and D_τ

- $B_\tau\xi := \int_0^\tau T_t B \xi dt \quad \forall \xi \in \mathbb{R}^m$

- $C_\tau\zeta := \int_0^\tau w(t) C_{\chi} T_t \zeta dt \quad \forall \zeta \in X$
5 Proof of main result: some comments

Sample-hold discretization of Σ

Define bounded operators B_τ, C_τ and D_τ

- $B_\tau \xi := \int_0^\tau T_t B \xi dt \quad \forall \xi \in \mathbb{R}^m$
- $C_\tau \zeta := \int_0^\tau w(t) C \Lambda T_t \zeta dt \quad \forall \zeta \in X$
- $D_\tau \xi := \int_0^\tau w(t)(G \xi)(t) dt \quad \forall \xi \in \mathbb{R}^m$,
5 Proof of main result: some comments

Sample-hold discretization of Σ

Define bounded operators B_τ, C_τ and D_τ

- $B_\tau \xi := \int_0^\tau T_t B \xi t \quad \forall \xi \in \mathbb{R}^m$

- $C_\tau \zeta := \int_0^\tau w(t) C_T t \zeta t \quad \forall \zeta \in X$

- $D_\tau \xi := \int_0^\tau w(t)(G \xi)(t) dt \quad \forall \xi \in \mathbb{R}^m,$

where G is the i/o-operator of Σ.
Lemma

Let the input u of Σ be of the form $u = H_\tau f_d$, where f_d is a discrete-time signal. Let x and y be the corresponding state and output functions of Σ, respectively.
Lemma

Let the input u of Σ be of the form $u = \mathcal{H}_\tau f_d$, where f_d is a discrete-time signal. Let x and y be the corresponding state and output functions of Σ, respectively.

Then, for all $k \in \mathbb{Z}_+$,

\[
\begin{align*}
x((k + 1)\tau) &= T_\tau x(k\tau) + B_\tau f_d(k) \\
(S_\tau y)(k) &= C_\tau x(k\tau) + D_\tau f_d(k)
\end{align*}
\]
Lemma

Let the input \(u \) of \(\Sigma \) be of the form \(u = H_\tau f_d \), where \(f_d \) is a discrete-time signal. Let \(x \) and \(y \) be the corresponding state and output functions of \(\Sigma \), respectively.

Then, for all \(k \in \mathbb{Z}_+ \),

\[
\begin{align*}
x((k + 1)\tau) &= T_\tau x(k\tau) + B_\tau f_d(k) \\
(S_\tau y)(k) &= C_\tau x(k\tau) + D_\tau f_d(k)
\end{align*}
\]

The discrete-time system \((T_\tau, B_\tau, C_\tau, D_\tau)\) is the so-called sample-hold discretization of \(\Sigma \).
Proposition
Proposition

Let $2 \leq q \leq \infty$.

SDS is exponentially L^q/l^q-input-to-state stable if and only if

$\Sigma_d = (A_d, B_d, C_d)$ stabilizes $(T_\tau, B_\tau, C_\tau, D_\tau)$ in the sense that the operator
Proposition

Let $2 \leq q \leq \infty$.

SDS is exponentially L^q/l^q-input-to-state stable if and only if
$
\Sigma_d = (A_d, B_d, C_d)$ stabilizes $(T_\tau, B_\tau, C_\tau, D_\tau)$ in the sense that the operator

$$
\Delta := \begin{pmatrix}
T_\tau & -B_\tau C_d \\
B_d C_\tau & A_d - B_d D_\tau C_d
\end{pmatrix}
$$

is power-stable (that is, the spectral radius of Δ is smaller than 1).
Sketch proof of (a) \implies (c)
Sketch proof of \((a) \Rightarrow (c)\)

Transfer function of sample/hold discretization:

\[
G_\tau(\bar{z}) = C_\tau(\bar{z}I - T_\tau)^{-1}B_\tau + D_\tau
\]
Sketch proof of (a) ⇒ (c)

Transfer function of sample/hold discretization:

\[G_\tau(z) = C_\tau (zI - T_\tau)^{-1} B_\tau + D_\tau \]

Decomposition:

\[G_\tau = G^-_\tau + G^+_\tau \]
Sketch proof of (a) \Rightarrow (c)

Transfer function of sample/hold discretization:

$$G_T(z) = C_T(zI - T_T)^{-1}B_T + D_T$$

Decomposition: $G_T = G_T^- + G_T^+$

Here

$$G_T^-(z) = C_T^-(zI - T_T^-)^{-1}B_T^- + D_T,$$
$$G_T^+(z) = C_T^+(zI - T_T^+)^{-1}B_T^+,$$

where B_T^+, B_T^- etc are defined in the usual way
By (A1) and (A2)
By (A1) and (A2)

- G_τ^+ rational and strictly proper
By (A1) and (A2)

- G_{τ}^+ rational and strictly proper

- $G_{\tau}^- \in H_\rho^\infty$ for some $\rho \in (0, 1)$
By (A1) and (A2)

- G^+_τ rational and strictly proper
- $G^-_{\tau} \in H^\infty_\rho$ for some $\rho \in (0, 1)$

where

$$H^\infty_\rho := \{\text{functions holomorphic & bounded on } |z| > \rho\}$$
By (A1) and (A2)

- G^+_{τ} rational and strictly proper
- $G^-_{\tau} \in H^{\infty}_\rho$ for some $\rho \in (0, 1)$

where

$$H^{\infty}_\rho := \{\text{functions holomorphic \& bounded on } |z| > \rho\}$$

Well-known frequency-domain result guarantees existence of a strictly proper rational G_d such that

$$F(G_{\tau}, G_d) := \begin{pmatrix}
(I + G_{\tau}G_d)^{-1} & G_{\tau}(I + G_dG_{\tau})^{-1} \\
G_d(I + G_{\tau}G_d)^{-1} & (I + G_dG_{\tau})^{-1}
\end{pmatrix} \in H^{\infty}$$
Let \((A_d, B_d, C_d)\) be a stabilizable and detectable realization of \(G_d\).
Let \((A_d, B_d, C_d)\) be a stabilizable and detectable realization of \(G_d\).

\[F(G_t, G_d) \in H^\infty \] means that \((A_d, B_d, C_d)\) stabilizes \((A_t, B_t, C_t, D_t)\) in the sense of \(l^2\)-stability.
Let \((A_d, B_d, C_d)\) be a stabilizable and detectable realization of \(G_d\).

- \(F(G_\tau, G_d) \in H^\infty\) means that \((A_d, B_d, C_d)\) stabilizes \((A_\tau, B_\tau, C_\tau, D_\tau)\) in the sense of \(l^2\)-stability.

By Proposition, it is sufficient to show that

\[
\Delta = \begin{pmatrix}
T_\tau & -B_\tau C_d \\
B_d C_\tau & A_d - B_d D_\tau C_d
\end{pmatrix}
\]

is power stable.
Let \((A_d, B_d, C_d)\) be a stabilizable and detectable realization of \(G_d\).

\(F(G_\tau, G_d) \in H^\infty\) means that \((A_d, B_d, C_d)\) stabilizes \((A_\tau, B_\tau, C_\tau, D_\tau)\) in the sense of \(l^2\)-stability.

By Proposition, it is sufficient to show that

\[
\Delta = \begin{pmatrix}
T_\tau & -B_\tau C_d \\
B_d C_\tau & A_d - B_d D_\tau C_d
\end{pmatrix}
\]

is power stable.

Power-stability of \(\Delta\) will follow from \(l^2\)-stability, provided that \((T_\tau, B_\tau)\) is stabilizable and \((C_\tau, T_\tau)\) is detectable.
Let \((A_d, B_d, C_d)\) be a stabilizable and detectable realization of \(G_d\).

\[F(G_\tau, G_d) \in H^\infty \] means that \((A_d, B_d, C_d)\) stabilizes \((A_\tau, B_\tau, C_\tau, D_\tau)\) in the sense of \(l^2\)-stability.

By Proposition, it is sufficient to show that

\[
\Delta = \begin{pmatrix}
T_\tau & -B_\tau C_d \\
B_d C_\tau & A_d - B_d D_\tau C_d
\end{pmatrix}
\]

is power stable.

Power-stability of \(\Delta\) will follow from \(l^2\)-stability, provided that \((T_\tau, B_\tau)\) is stabilizable and \((C_\tau, T_\tau)\) is detectable.

The latter is a consequence of (A3)-(A5).
Comment on (b) ⇒ (a)
Comment on \((b) \Rightarrow (a)\)

It follows from a general result by Rebarber & Townley (\textit{IEEE TAC}, 1997) that (A1) and (A2) are necessary for (b).
Comment on \((b) \Rightarrow (a)\)

It follows from a general result by Rebarber & Townley (\textit{IEEE TAC}, 1997) that \((A1)\) and \((A2)\) are necessary for \((b)\).

-
-
-
-