Smart Checklists for Human-Intensive Medical Systems

George S. Avrunin¹ Lori A. Clarke¹ Leon J. Osterweil¹
Julian M. Goldman² Tracy Rausch³

¹University of Massachusetts Amherst
²Massachusetts General Hospital
³DocBox, Inc.

WORCS 2012
Human-intensive systems (HISs): Systems involving people, devices, and software applications in which the participation and expertise of the humans play a central role in achieving success

- E.g., medical care, air traffic control, nuclear plant management
Human-intensive systems (HISs): Systems involving people, devices, and software applications in which the participation and expertise of the humans play a central role in achieving success

- E.g., medical care, air traffic control, nuclear plant management

HISs are:

- Typically concurrent and exception-rich; correct actions of participants are heavily dependent on context (current state and history)
- Hard to understand, develop, and maintain since they add the complexity and variability of human participation to complex cyber-physical systems
Human-intensive systems (HISs): Systems involving people, devices, and software applications in which the participation and expertise of the humans play a central role in achieving success

- E.g., medical care, air traffic control, nuclear plant management

HISs are:

- Typically concurrent and exception-rich; correct actions of participants are heavily dependent on context (current state and history)
- Hard to understand, develop, and maintain since they add the complexity and variability of human participation to complex cyber-physical systems
- Error-prone—100,000 avoidable deaths per year in US hospitals from medical errors
Use of checklists to support human participants is well-established in domains like aviation.

More recently introduced in medicine with some positive results, but also notable shortcomings:
- typically simple, largely sequential, static lists
- don’t handle exceptions or reflect complex dynamic context
- seen as adding to workload

We are exploring the use of *smart, context-aware, dynamic* checklists to assist human participants in medical processes.

Building on our previous work on formalizing and analyzing medical processes.
Examples

- OR-ICU handoff of patient undergoing coronary artery bypass graft surgery
 - When surgery is completed, patient moved to ICU
 - ICU personnel must prepare appropriate equipment (infusion pumps, blood pressure monitors, lung ventilator, etc.), supplies, and medication
 - During surgery, information about medications, ventilator settings, any atypical devices/therapies transmitted to Smart Checklists for ICU personnel; devices in ICU autoconfigured (with clinician confirmation using Smart Checklists)
Examples

- OR-ICU handoff of patient undergoing coronary artery bypass graft surgery
 - When surgery is completed, patient moved to ICU
 - ICU personnel must prepare appropriate equipment (infusion pumps, blood pressure monitors, lung ventilator, etc.), supplies, and medication
 - During surgery, information about medications, ventilator settings, any atypical devices/therapies transmitted to Smart Checklists for ICU personnel; devices in ICU autoconfigured (with clinician confirmation using Smart Checklists)

- Interruption of ventilator for x-ray
 - When ventilator turned off for x-ray, Smart Checklists remind appropriate personnel to turn it back on (with increasing urgency!)
What a Checklist Might Look Like

Avrunin, Clarke, Osterweil, Goldman, Rausch (University of Massachusetts Amherst, Massachusetts General Hospital, DocBox, Inc.)

Pick up Blood from Blood Bank
- Started 10:40
- Completed 10:45

Perform Transfusion - Administer a Single Unit of Blood Product
- Started 10:46

Perform Pre-Infusion Work
- Started 10:48
- Completed 11:27

Infuse Unit of Blood Product
- Started 11:35
- Completed 11:50

Perform Post-Infusion Work
- Started 13:35

Evaluate Patient Clinically
- Started 13:36
 - Check Vital Signs
 - Started 13:36
 - Completed 13:36
 - Done
 - Obtain Vital Signs
 - Done
 - Document Vital Signs

Record Infusion Information

Discard Infusion Materials

Perform Follow Through Check
Another Example
Our Previous Work Focused On

- Modeling Processes
 - Little-JIL process language
 - rich language with well-defined semantics; includes concurrency, exception-handling, etc.
 - describes agents, resources, artifacts
Our Previous Work Focused On

- **Modeling Processes**
 - Little-JIL process language
 - rich language with well-defined semantics; includes concurrency, exception-handling, etc.
 - describes agents, resources, artifacts

- **Analyzing process models**
 - Error detection
 - Model checking
 - Vulnerability analysis
 - Fault-tree Analysis and Failure Modes and Effects Analysis
 - Evaluation of efficiency
 - Discrete event simulation
Process Improvement Environment

Property elicitor (PROPEL)

Process editor (Little-JIL editor)

Process definition + requirements

Device model

Requirements Derivation

Model Checker (FLAVERS)

Satisfied properties, violated properties + counterexamples

Derived Requirements

Fault trees, minimal cut sets

Textual representation of process definition

Fault tree generator

Fault modes

Failure mode and effects analyzer

Effects of failure modes

Discrete event simulator

Discrete event simulation runs

Scenario specifications

Hazard

Static Analysis

Process Improvement Feedback

Avrunin, Clarke, Osterweil, Goldman, Rausch

Smart Checklists

WORCS 2012
Case Studies

- Blood transfusion
- Chemotherapy administration
- Patient flow in emergency department
Case Studies

- Blood transfusion
- Chemotherapy administration
- Patient flow in emergency department

Medical professionals say we changed the way they describe and teach their processes
Case Studies

- Blood transfusion
- Chemotherapy administration
- Patient flow in emergency department

Medical professionals say we changed the way they describe and teach their processes

Chemotherapy process saw 70% reduction in errors that reach the patient. [Mertens 2012]
Case studies used a static process improvement cycle:

- Actual Process
- Process Model
- Defects
- Elicitation
- Static Analysis
- Modification
- Implementation
- Monitoring
- Guidance

Now we want to use the model to monitor and guide ongoing process execution.

Avrunin, Clarke, Osterweil, Goldman, Rausch (University of Massachusetts Amherst, Massachusetts General Hospital, DocBox, Inc.)

Smart Checklists
Case studies used a static process improvement cycle:

- Actual Process
- Process Model
- Defects
- Static Analysis
- Modification
- Elicitation
- Implementation
- Monitoring
- Guidance
Case studies used a static process improvement cycle:

Now we want to use the model to monitor and guide ongoing process execution.
Research to Achieve This Vision

We have recently begun to develop a prototype system, *SmartCheck*, to explore these ideas in the health care domain.

Research directions we are pursuing now:

- Architecture to support communication between “real world” and “model world” and among checklist components
- Monitoring
- Retrospection and prospection of process state
- Deviation detection and explanation
- Real-time and profile-based analyses
Architecture

Building on

- DocBox technology
 - Developed with Medical Device Plug-and-Play Interoperability Program
 - Creates links between human performers, devices, and hospital network
- Janus message passing system (UMass)
 - Translates between agent activities and Little-JIL process events
 - Has been used primarily with human agents, but will communicate with devices and hospital software applications through DocBox platform

Most analysis components are both producers and consumers of information; have to manage their communication.
Monitoring

- Requires event recording mechanism
 - For now, we assume hospital electronic medical record system or some other system records events we need

- Challenges
 - Events may be dropped, misinterpreted, recorded out of order
 - Repetition may be harmless (check ID, record temperature, check ID) or harmful (administer medication, check ID, administer medication)
Human process performers need information about history of process execution, artifacts, etc.

- Especially important in circumstances, like OR-ICU handoff, where some performers enter process with little knowledge of history of particular process execution
- Little-JIL maintains some information but will need new technologies to gather, store, and summarize such information as what steps were performed by which entities, using which inputs
- Initially using Data Derivation Graphs [Osterweil 2008, 2010; Lerner 2011] to manage the information; controlling size will be important
Process Context

Human process performers need information about history of process execution, artifacts, etc.

- Especially important in circumstances, like OR-ICU handoff, where some performers enter process with little knowledge of history of particular process execution.
- Little-JIL maintains some information but will need new technologies to gather, store, and summarize such information as what steps were performed by which entities, using which inputs.
- Initially using Data Derivation Graphs [Osterweil 2008, 2010; Lerner 2011] to manage the information; controlling size will be important.

Also want to provide prospective information about future execution.

- What steps are coming up? What are likely resource utilization consequences of alternative?
- Need estimates based on analyses of historical profiles, simulations, etc.
Detect Deviations from Process

Notify participants when process execution deviates from process model

- Map recorded events to process steps (not necessarily 1-1 correspondence)
- Determine whether recorded sequence of events corresponds to a (prefix of a) trace in process model
Detect Deviations from Process

Notify participants when process execution deviates from process model

- Map recorded events to process steps (not necessarily 1-1 correspondence)
- Determine whether recorded sequence of events corresponds to a (prefix of a) trace in process model

May not be able to do this immediately . . .
Detect Deviations from Process

Notify participants when process execution deviates from process model

- Map recorded events to process steps (not necessarily 1-1 correspondence)
- Determine whether recorded sequence of events corresponds to a (prefix of a) trace in process model

May not be able to do this immediately . . .

recorded sequence: \textit{acdg}
Detect Deviations from Process

Notify participants when process execution deviates from process model

- Map recorded events to process steps (not necessarily 1-1 correspondence)
- Determine whether recorded sequence of events corresponds to a (prefix of a) trace in process model

May not be able to do this immediately . . .

recorded sequence: \(acdg\)
Detect Deviations from Process

Notify participants when process execution deviates from process model

- Map recorded events to process steps (not necessarily 1-1 correspondence)
- Determine whether recorded sequence of events corresponds to a (prefix of a) trace in process model

May not be able to do this immediately . . .

recorded sequence: \textit{acdg}
"Explain" Deviations from Process

When deviation is detected, want to suggest likely sources of problem to human participants.
"Explain" Deviations from Process

When deviation is detected, want to suggest likely sources of problem to human participants

recorded sequence: *acdg*

Problem is either a dropped *b* or doing *g* instead of *e*. But correct recovery actions are likely to be different.

Experimenting with use of string matching techniques to measure "edit distance" between recorded sequence and traces and provide participants with a useful ranking of likely explanations.
"Explain" Deviations from Process

When deviation is detected, want to suggest likely sources of problem to human participants

recorded sequence: \textit{acdg}

Avrunin, Clarke, Osterweil, Goldman, Rausch (University of Massachusetts Amherst, Massachusetts General Hospital, DocBox, Inc.)

Smart Checklists
"Explain" Deviations from Process

When deviation is detected, want to suggest likely sources of problem to human participants

recorded sequence: acdg

Problem is either a dropped b or doing g instead of e. But correct recovery actions are likely to be different.

Avrunin, Clarke, Osterweil, Goldman, Rausch (University of Massachusetts Amherst, Massachusetts General Hospital, DocBox, Inc.)

Smart Checklists
"Explain" Deviations from Process

When deviation is detected, want to suggest likely sources of problem to human participants

recorded sequence: \textit{acdg}

Problem is either a dropped \textit{b} or doing \textit{g} instead of \textit{e}. But correct recovery actions are likely to be different.

Experimenting with use of string matching techniques to measure “edit distance” between recorded sequence and traces and provide participants with a useful ranking of likely explanations.
Real-Time and Profile-Based Analyses

- **Real-time**
 - Static analysis to identify timing vulnerabilities and guide decisions about meeting deadlines
 - Dynamic analysis to identify upcoming deadlines, issue (appropriately intrusive) warnings
 - Little-JIL currently provides a primitive timer construct, but not powerful enough to express kinds of hard and soft real-time constraints arising in medical care, so research on specification will be needed

Profile-based analysis
- Accumulate historical information summarizing multiple process executions
- Use this to, e.g., determine whether a particular check is wasteful or suggest inserting an additional check to catch a large number of errors
- Incorporate good estimates of probabilities of events/transitions for probabilistic model checking, FTA, FMEA, and string matching for explaining deviations
Real-Time and Profile-Based Analyses

- **Real-time**
 - Static analysis to identify timing vulnerabilities and guide decisions about meeting deadlines
 - Dynamic analysis to identify upcoming deadlines, issue (appropriately intrusive) warnings
 - Little-JIL currently provides a primitive timer construct, but not powerful enough to express kinds of hard and soft real-time constraints arising in medical care, so research on specification will be needed

- **Profile-based analysis**
 - Accumulate historical information summarizing multiple process executions
 - Use this to, e.g., determine whether a particular check is wasteful or suggest inserting an additional check to catch a large number of errors
 - Incorporate good estimates of probabilities of events/transitions for probabilistic model checking, FTA, FMEA, and string matching for explaining deviations
Does architecture of our prototype adequately support communication and interaction among components and process agents?

How well does our system represent past, present, and future context information? How well does it respond to queries about context from process performers?

What kind of detail/fidelity in the event stream is required?

How well does our system detect deviations and identify likely causes?

How can profiles of past executions be used to improve process models, monitoring, and guidance?

How well can we specify and supply real-time information?

Will explore these using simulated event streams from a variety of sources and panels of experts; eventually move to simulated clinical settings.
Thanks