Approximation algorithm for directed tree cover

Viet Hung Nguyen

LIP6; Université Pierre et Marie Curie Paris 6; 4 place Jussieu, Paris, France Hung.Nguyen@lip6.fr

Mots-Clés : approximation algorithm, linear programming, primal-dual, tree cover, set cover

1 Introduction

Let G = (V, A) be a (weakly) connected directed graph with a (non negative) cost function $c : A \Rightarrow \mathbb{Q}_+$ defined on the arcs. Let c(u, v) denote the cost of the arc $(u, v) \in A$. A directed tree cover is a weakly connected subgraph T = (U, F) such that

- 1. for every $e \in A$, F contains an arc f intersecting e, i.e. f and e have at least an end vertex in common.
- 2. T is a branching.

The *minimum directed tree cover problem* (DTCP) is to find a directed tree cover of minimum cost. Several related problems to DTCP have been investigated, in particular :

- its undirected counterpart, the minimum tree cover problem (TCP) and
- the tour cover problem in which T is a tour (not necessarily simple) instead of a tree. This problem has also two versions : undirected (ToCP) and directed (DToCP).

These problems have been studied in [1], [3], [2], [4] and [5]. In [2], the author pointed out that his approach for TCP can be extended to give a 2-approximation algorithm for the unweighted case of DTCP but falls short once arbitrary costs are allowed. Hence the general DTCP remains open.

2 Results

In this paper, we introduce the minimum r-branching cover problem which is to find a minimum directed tree cover with a specific root r. Hence, an α -approximation algorithm for DTCP can be obtained from an α -approximation algorithm for the minimum r-branching cover problem by applying this latter |V| times.

We then show that the weighted Set Cover Problem (SCP) is a special case of the minimum rbranching cover problem, consequently using the known complexity result for SCP we derive the following.

Théorème 1 Let $D^+ = \max(|\delta^+(v)|$ where $v \in V$), the maximum outgoing degree of the nodes in G then :

- If there exists a $c\ln(D^+)$ -approximation algorithm for the minimum r-branching cover problem where c < 1 then $NP \subseteq DTIME(n^{\{O(\log^k(D^+))\}})$. - There exists some 0 < c < 1 such that if there exists a $c \log(D^+)$ -approximation algorithm for the minimum r-branching cover problem, then P = NP.

Thus in some sense, our approximation for DTCP seems to be the best possible. We present first an integer formulation for DTCP inspired from the one in [3] designed originally for the TCP. The formulation is as follows : for a fixed root r, define \mathcal{F} to be the set of all subsets S of $V \setminus \{r\}$ such that S induces at least one arc of A,

$$\mathcal{F} = \{ S \subseteq V \setminus \{r\} \mid A(S) \neq \emptyset \}.$$

Let T be the arc set of a directed tree cover of G containing r, T is thus a branching rooted at r. Now for every $S \in \mathcal{F}$, at least one node, saying v, in S should belong to V(T). By definition of directed tree cover there is a path from r to v in T and as $r \notin S$, this path should contain at least one arc in $\delta^{-}(S)$. This leads to the following IP formulation for the minimum r-branching cover.

$$\min \sum_{e \in A} c(e) x_e$$
$$\sum_{e \in \delta^-(S)} x_e \ge 1 \text{ for all } S \in \mathcal{F}$$
$$x \in \{0, 1\}^A.$$

Based on the linear programming relaxation of this formulation, we design an algorithm which is a composition of 2 phases :

- Phase I is of a primal-dual style which tries to cover the sets $S \in \mathcal{F}$ such that |S| = 2. We obtain, after Phase I, a partial solution T_1 and a dual feasible solution y_1 such that the cost of T_1 is at most 2 times the cost of y_1 . Note that the partial solution T_1 is a cover but not necessary weakly connected branching.
- Phase II works with the reduced costs issued from Phase I and preserves the partial solution T_1 . The problem is to make T_1 weakly connected. Phase II transforms this problem to a kind of Set Cover Problem and solve it by a greedy algorithm. Phase II outputs a set of arcs T_2 completing with T_1 to form a *r*-branching cover and a dual feasible solution y_2 such that the cost of T_2 (which is computed using the reduced costs issued from Phase I) is at most $\ln(D^+)$ times the cost of y_2 .

Hence, we have the following theorem

Théorème 2 DTCP can be approximated in polynomial time within a factor of $\max(2, \ln(D^+))$ with $D^+ = \max(|\delta^+(v)| \text{ where } v \in V).$

Références

- Arkin, E.M., Halldórsson, M. M. and Hassin R. : Approximating the tree and tour covers of a graph, Information Processing Letters, 47, 275-282 (1993)
- [2] Fujito, T. : How to Trim an MST : A 2-Approximation Algorithm for Minimum Cost Tree Cover, in Proceedings of ICALP 2006, LNCS 4051, 431-442 (2006)
- [3] Könemann, J., Konjevod, G., Parekh O. and Sinha, A. : Improved Approximations for Tour and Tree Covers, Algorithmica, 38, 441-449 (2003)
- [4] Nguyen, V.H. : Approximation algorithms for metric tree cover and generalized tour and tree covers, RAIRO Operations Research, 41, No. 3, 305-315 (2007)
- [5] Nguyen, V.H. : A $2\log_2(n)$ -Approximation Algorithm for Directed Tour Cover, in Proceedings of COCOA 2009, LNCS 5573, 208-218 (2009)