Une approche bi-objectif pour le réordonnancement d'un flowshop

Jacques Teghem; Daniel Tuyttens Faculté Polytechnique, Université de Mons, Belgique jacques.teghem@umons.ac.be

L'étude est inspirée par l'article de Hall et Potts [1].

Soit un modèle de flowshop de permutation $PFm//\gamma$ où γ est un critère classique d'ordonnancement $(\gamma \in \{C_{max}, \overline{C}, T_{max}, \overline{T}, N_t, \ldots\})$.

Un ensemble J_0 de travaux initiaux ont déjà été ordonnancés selon la permutation ν^* de J_0 mais ces travaux n'ont pas encore été effectués. Soient y_j^* et C_j^* , $j \in J_0$, respectivement la position et la fin d'exécution de j suivant ν^* . Un ensemble J_N de nouveaux travaux doit être intégré dans l'ordonnancement pour former une permutation σ de $J_0 \cup J_N$ en tenant compte du critère $\gamma(\sigma)$. Soient y_j et C_j , $j \in J_0$, respectivement la position et la fin d'exécution de j suivant σ .

Toutefois il convient également de ne pas trop perturber la permutation initiale ν^* de J_0 .

Suivant [1], un des quatre critères $\delta(\sigma)$ suivants peut être introduit pour mesurer la perturbation:

mesurer in perturbation:
$$-\bar{D}(\sigma) = \sum_{j \in J_0} |y_j - y_j^*|$$

$$-D_{max}(\sigma) = \max_{j \in J_0} |y_j - y_j^*|$$

$$-\bar{\Delta}(\sigma) = \sum_{j \in J_0} |C_j - C_j^*|$$

$$-\Delta_{max}(\sigma) = \max_{j \in J_0} |C_j - C_j^*|$$
Lighting the derivative and the distribution of the derivative and the distribution of the distrib

L'objet de l'étude est de déterminer ou d'approximer le front Pareto du modèle bi-objectif $PFm//(\gamma, \delta)$.

Dans une première partie consacrée au cas général, le problème est traité à l'aide d'une métaheuristique multicritère, en l'occurence la méthode MOSA [2].

Dans une deuxième partie, nous traitons trois cas particuliers pour lesquels une permutation optimale du critère γ est obtenue suivant une règle de rangement des travaux:

- a) m = 1, $\gamma = T_{max}$ avec la règle EDD
- b) $m = 1, \ \gamma = \overline{C}$ avec la règle SPT
- a) $m=2,\ \gamma=C_{max}$ avec la règle de Johnson

Nous montrons que si pour les deux modèles a) et b) le problème bi-critère peut être résolu de manière exacte par des algorithmes simples, ceux-ci ne sont plus que des heuristiques efficaces pour le modèle c) et nous en analysons

les raisons.

Des résultats numériques illustrent l'étude.

[1] N.G.HALL and C.N.POTTS Rescheduling for new orders O.R., 52, 3 (2004)), 440-453

[2] E.L.ULUNGU; J.TEGHEM; P.FORTEMPS and D.TUYTTENS MOSA: a tool for solving multiobjective combinatorial optimization problems JMCDA, 8 (1999), 221-236

Mots clés: ordonnancement; optimisation multiobjectif