
Performance of Zinder-Roper algorithm for unitary

RCPSP with constant precedence latencies ∗

Abir Benabid1,2, Claire Hanen2,3

1 Laboratoire LIP6, 104 av Kennedy 75016 Paris
2 University Pierre and Marie Curie Paris

3 University Paris Ouest Nanterre la Défense

Abir.Benabid@lip6.fr, Claire.Hanen@lip6.fr

Mots-Clés : s cheduling theory, resource constraints, precedence latencies, maximum lateness,
worst-case analysis.

Scheduling problems on multiprocessors systems with precedence constraints are among the most
difficult problems, in particular for the design of good approximation algorithms. Until now, much
work has been done considering a model with identical processors and unit execution time tasks
subject to precedence relations. However, one major architectural feature on the modern micropro-
cessors is the employment of multiple specialized and pipelined functional units. Each functional unit
executes only a specific type of tasks, and it is pipelined, it can start a new task every time unit,
although the whole computation of a task takes a time which might be greater than one.

In order to model such realistic situations, we define the unitary RCPSP. In the three-field notation
(see for example [2]), the above problem, with k types of processors is denoted by

ΣkP |prec, δij , pi = 1|Lmax

where the terms prec and δij indicate the presence of precedence latencies, associating with each
precedence constraint a constant amount of time which must elapse between the completion and
start times of the corresponding tasks. This instance has a set of n tasks T . Each task i ∈ T requires
one unit of processor’s time and it has a due-date di and a boolean type vector {br}1≤r≤k where
br = 1 when i is processed on processor of type r.

A schedule σ assigns a completion time Ci(σ) to each task i. The maximum lateness of σ is defined
as follows

Lmax(σ) = max
i∈T
Cσi − di

A well-studied special case is the makespan problem on identical processors. In fact, if all due dates
are equal to zero and all tasks and all processors have the same type, then the maximum lateness
problem becomes the makespan problem on identical processors

P |prec, δij , pi = 1|Cmax

with the criterion Cmax(σ) = max
i∈T
Ci(σ).
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It is well known that even P |prec, pj = 1|Cmax is NP-hard in the strong sense [5], [4]. Moreover, as
has been shown in [6], the P |prec, pj = 1|Cmax problem remains NP-hard in the strong sense even if
the partially ordered set of tasks is a bipartite graph. These NP-hardness results boost the interest
in the worst-case performance of various approximation algorithms for this problem [2],[1], [6], [7].

When due-dates are involved, and maximum lateness is optimized, the first version of Garey-
Johnson algorithm solves optimally the problem when m = 2, δ = 0. In [3], the generalization of this
algorithm to unitary RCPSP with constant latency δ leads to the following worst case performance :
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The best known performance guarantee for the Lmax on parallel processors without latencies is
given by [8] :
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In this presentation, we study the Zinder-Roper extension for the maximum lateness minimization
on unitary RCPSP with precedence latencies and we prove that the performance guarantee obtained,
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with δ = max
(i,j)∈G

δij , outperforms the bounds for general list schedules, and coincides with the Zinder-

Roper bound for parallel processors without latencies.
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